What is Deepfake Detection? DeepFake detection is the task of detecting fake videos or images that have been generated using deep learning techniques.
Papers and Code
Jul 16, 2025
Abstract:Recent studies have utilized visual large language models (VLMs) to answer not only "Is this face a forgery?" but also "Why is the face a forgery?" These studies introduced forgery-related attributes, such as forgery location and type, to construct deepfake VQA datasets and train VLMs, achieving high accuracy while providing human-understandable explanatory text descriptions. However, these methods still have limitations. For example, they do not fully leverage face quality-related attributes, which are often abnormal in forged faces, and they lack effective training strategies for forgery-aware VLMs. In this paper, we extend the VQA dataset to create DD-VQA+, which features a richer set of attributes and a more diverse range of samples. Furthermore, we introduce a novel forgery detection framework, MGFFD-VLM, which integrates an Attribute-Driven Hybrid LoRA Strategy to enhance the capabilities of Visual Large Language Models (VLMs). Additionally, our framework incorporates Multi-Granularity Prompt Learning and a Forgery-Aware Training Strategy. By transforming classification and forgery segmentation results into prompts, our method not only improves forgery classification but also enhances interpretability. To further boost detection performance, we design multiple forgery-related auxiliary losses. Experimental results demonstrate that our approach surpasses existing methods in both text-based forgery judgment and analysis, achieving superior accuracy.
Via

Jul 15, 2025
Abstract:Advances in voice conversion and text-to-speech synthesis have made automatic speaker verification (ASV) systems more susceptible to spoofing attacks. This work explores modest refinements to the AASIST anti-spoofing architecture. It incorporates a frozen Wav2Vec 2.0 encoder to retain self-supervised speech representations in limited-data settings, substitutes the original graph attention block with a standardized multi-head attention module using heterogeneous query projections, and replaces heuristic frame-segment fusion with a trainable, context-aware integration layer. When evaluated on the ASVspoof 5 corpus, the proposed system reaches a 7.6\% equal error rate (EER), improving on a re-implemented AASIST baseline under the same training conditions. Ablation experiments suggest that each architectural change contributes to the overall performance, indicating that targeted adjustments to established models may help strengthen speech deepfake detection in practical scenarios. The code is publicly available at https://github.com/KORALLLL/AASIST_SCALING.
Via

Jul 09, 2025
Abstract:Existing research on source tracing of audio deepfake systems has focused primarily on the closed-set scenario, while studies that evaluate open-set performance are limited to a small number of unseen systems. Due to the large number of emerging audio deepfake systems, robust open-set source tracing is critical. We leverage the protocol of the Interspeech 2025 special session on source tracing to evaluate methods for improving open-set source tracing performance. We introduce a novel adaptation to the energy score for out-of-distribution (OOD) detection, softmax energy (SME). We find that replacing the typical temperature-scaled energy score with SME provides a relative average improvement of 31% in the standard FPR95 (false positive rate at true positive rate of 95%) measure. We further explore SME-guided training as well as copy synthesis, codec, and reverberation augmentations, yielding an FPR95 of 8.3%.
* Accepted by INTERSPEECH 2025 as part of the special session "Source
Tracing: The Origins of Synthetic or Manipulated Speech"
Via

Jul 03, 2025
Abstract:We introduce a deepfake video detection approach that exploits pixel-wise temporal inconsistencies, which traditional spatial frequency-based detectors often overlook. Traditional detectors represent temporal information merely by stacking spatial frequency spectra across frames, resulting in the failure to detect temporal artifacts in the pixel plane. Our approach performs a 1D Fourier transform on the time axis for each pixel, extracting features highly sensitive to temporal inconsistencies, especially in areas prone to unnatural movements. To precisely locate regions containing the temporal artifacts, we introduce an attention proposal module trained in an end-to-end manner. Additionally, our joint transformer module effectively integrates pixel-wise temporal frequency features with spatio-temporal context features, expanding the range of detectable forgery artifacts. Our framework represents a significant advancement in deepfake video detection, providing robust performance across diverse and challenging detection scenarios.
* accepted by iccv 2025. code is will be available at
https://github.com/rama0126/PwTF-DVD
Via

Jul 02, 2025
Abstract:In this paper, we present our comprehensive study aimed at enhancing the generalization capabilities of audio deepfake detection models. We investigate the performance of various pre-trained backbones, including Wav2Vec2, WavLM, and Whisper, across a diverse set of datasets, including those from the ASVspoof challenges and additional sources. Our experiments focus on the effects of different data augmentation strategies and loss functions on model performance. The results of our research demonstrate substantial enhancements in the generalization capabilities of audio deepfake detection models, surpassing the performance of the top-ranked single system in the ASVspoof 5 Challenge. This study contributes valuable insights into the optimization of audio models for more robust deepfake detection and facilitates future research in this critical area.
* 8 pages, 3 figures
Via

Jul 03, 2025
Abstract:Deepfake detection models face two critical challenges: generalization to unseen manipulations and demographic fairness among population groups. However, existing approaches often demonstrate that these two objectives are inherently conflicting, revealing a trade-off between them. In this paper, we, for the first time, uncover and formally define a causal relationship between fairness and generalization. Building on the back-door adjustment, we show that controlling for confounders (data distribution and model capacity) enables improved generalization via fairness interventions. Motivated by this insight, we propose Demographic Attribute-insensitive Intervention Detection (DAID), a plug-and-play framework composed of: i) Demographic-aware data rebalancing, which employs inverse-propensity weighting and subgroup-wise feature normalization to neutralize distributional biases; and ii) Demographic-agnostic feature aggregation, which uses a novel alignment loss to suppress sensitive-attribute signals. Across three cross-domain benchmarks, DAID consistently achieves superior performance in both fairness and generalization compared to several state-of-the-art detectors, validating both its theoretical foundation and practical effectiveness.
* 14 pages, version 1
Via

Jun 25, 2025
Abstract:With the rapid advancement of deep learning, particularly through generative adversarial networks (GANs) and diffusion models (DMs), AI-generated images, or ``deepfakes", have become nearly indistinguishable from real ones. These images are widely shared across Online Social Networks (OSNs), raising concerns about their misuse. Existing deepfake detection methods overlook the ``block effects" introduced by compression in OSNs, which obscure deepfake artifacts, and primarily focus on raw images, rarely encountered in real-world scenarios. To address these challenges, we propose PLADA (Pay Less Attention to Deceptive Artifacts), a novel framework designed to tackle the lack of paired data and the ineffective use of compressed images. PLADA consists of two core modules: Block Effect Eraser (B2E), which uses a dual-stage attention mechanism to handle block effects, and Open Data Aggregation (ODA), which processes both paired and unpaired data to improve detection. Extensive experiments across 26 datasets demonstrate that PLADA achieves a remarkable balance in deepfake detection, outperforming SoTA methods in detecting deepfakes on OSNs, even with limited paired data and compression. More importantly, this work introduces the ``block effect" as a critical factor in deepfake detection, providing a robust solution for open-world scenarios. Our code is available at https://github.com/ManyiLee/PLADA.
* 20 pages, 10 figures
Via

Jun 23, 2025
Abstract:Advancements in audio deepfake technology offers benefits like AI assistants, better accessibility for speech impairments, and enhanced entertainment. However, it also poses significant risks to security, privacy, and trust in digital communications. Detecting and mitigating these threats requires comprehensive datasets. Existing datasets lack diverse ethnic accents, making them inadequate for many real-world scenarios. Consequently, models trained on these datasets struggle to detect audio deepfakes in diverse linguistic and cultural contexts such as in South-Asian countries. Ironically, there is a stark lack of South-Asian speaker samples in the existing datasets despite constituting a quarter of the worlds population. This work introduces the IndieFake Dataset (IFD), featuring 27.17 hours of bonafide and deepfake audio from 50 English speaking Indian speakers. IFD offers balanced data distribution and includes speaker-level characterization, absent in datasets like ASVspoof21 (DF). We evaluated various baselines on IFD against existing ASVspoof21 (DF) and In-The-Wild (ITW) datasets. IFD outperforms ASVspoof21 (DF) and proves to be more challenging compared to benchmark ITW dataset. The dataset will be publicly available upon acceptance.
Via

Jun 13, 2025
Abstract:Generalization remains a critical challenge in speech deepfake detection (SDD). While various approaches aim to improve robustness, generalization is typically assessed through performance metrics like equal error rate without a theoretical framework to explain model performance. This work investigates sharpness as a theoretical proxy for generalization in SDD. We analyze how sharpness responds to domain shifts and find it increases in unseen conditions, indicating higher model sensitivity. Based on this, we apply Sharpness-Aware Minimization (SAM) to reduce sharpness explicitly, leading to better and more stable performance across diverse unseen test sets. Furthermore, correlation analysis confirms a statistically significant relationship between sharpness and generalization in most test settings. These findings suggest that sharpness can serve as a theoretical indicator for generalization in SDD and that sharpness-aware training offers a promising strategy for improving robustness.
* Accepted to Interspeech 2025
Via

Jun 12, 2025
Abstract:In the digital age, Deepfake present a formidable challenge by using advanced artificial intelligence to create highly convincing manipulated content, undermining information authenticity and security. These sophisticated fabrications surpass traditional detection methods in complexity and realism. To address this issue, we aim to harness cutting-edge deep learning methodologies to engineer an innovative deepfake detection model. However, most of the models designed for deepfake detection are large, causing heavy storage and memory consumption. In this research, we propose a lightweight convolution neural network (CNN) with squeeze and excitation block attention (SE) for Deepfake detection. The SE block module is designed to perform dynamic channel-wise feature recalibration. The SE block allows the network to emphasize informative features and suppress less useful ones, which leads to a more efficient and effective learning module. This module is integrated with a simple sequential model to perform Deepfake detection. The model is smaller in size and it achieves competing accuracy with the existing models for deepfake detection tasks. The model achieved an overall classification accuracy of 94.14% and AUC-ROC score of 0.985 on the Style GAN dataset from the Diverse Fake Face Dataset. Our proposed approach presents a promising avenue for combating the Deepfake challenge with minimal computational resources, developing efficient and scalable solutions for digital content verification.
Via
